Bulletin references July 2024

You can read the July 2024 Bulletin here.

Cutting-edge advances

An update on mRNA cancer vaccines

  1. Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy. Front Immunol 2022;13:1029069.
  2. Drew L. How does a cancer vaccine work? Nature 2024;627:S34–S35.
  3. Fiedler K, Lazzaro S, Lutz J, Rauch S, Heidenreich R. mRNA cancer vaccines. Recent Results Cancer Res 2016;2016:61–85.
  4. Nair SK, Morse M, Boczkowski D, Ian Cumming R, Vasovic L, Gilboa E et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 2002;235:540–549.
  5. Beatty GL, Haas AR, Maus M V., Torigian DA, Soulen MC, Plesa G et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol Res 2014;2:112–120.
  6. American Association for Cancer Research. Adding a personalized mRNA cancer vaccine to immunotherapy may prolong recurrence-free survival in patients with high-risk melanoma. Available at: www.aacr.org/about-the-aacr/newsroom/news-releases/adding-a-personalized-mrna-cancer-vaccine-to-immunotherapy-may-prolong-recurrence-free-survival-in-patients-with-high-risk-melanoma/
  7. Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023;618:144–150.
  8. Wilkinson E. UK–BioNTech partnership for mRNA cancer vaccines. Lancet Oncol 2023;24:846.
  9. Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, Taylor MH et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. The Lancet 2024;403:632–644.
  10. National Institute for Health and Care Research. Trial begins for groundbreaking new personalised melanoma treatment. Available at: www.nihr.ac.uk/news/trial-begins-for-groundbreaking-new-personalised-melanoma-treatment/35928
  11. Gregory A. ‘Real hope’ for cancer cure as personal mRNA vaccine for melanoma trialled. Available at: www.theguardian.com/society/2024/apr/26/cancer-mrna-vaccine-melanoma-trial

Phage therapy: a new frontier for antibiotic-refractory infections

  1. Fitzgerald CB, Shkoporov AN, Upadrasta A, Khokhlova EV, Ross RP, Hill C. Probing the “Dark Matter” of the Human Gut Phageome: Culture Assisted Metagenomics Enables Rapid Discovery and Host-Linking for Novel Bacteriophages. Front Cell Infect Microbiol 2021;doi: 10.3389/fcimb.2021.616918.
  2. Chanishvili N. Phage Therapy-History from Twort and d’Herelle Through Soviet Experience to Current Approaches. Adv Virus Res 2012;83:3–40.
  3. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399:629–655.
  4. Green SI, Clark JR, Santos HH, Weesner KE, Salazar KC, Aslam S et al. A Retrospective, Observational Study of 12 Cases of Expanded-Access Customized Phage Therapy: Production, Characteristics, and Clinical Outcomes. Clin Infect Dis 2023;doi:10.1093/cid/ciad335.
  5. Dedrick RM, Smith BE, Cristinziano M, Freeman KG, Jacobs-Sera D, Belessis Y et al. Phage Therapy of Mycobacterium Infections: Compassionate-use of Phages in Twenty Patients with Drug-Resistant Mycobacterial Disease. Clin Infect Dis Off Publ Infect Dis Soc Am 2022;doi:10.1093/cid/ciac453.
  6. Onallah H, Hazan R, Nir-Paz R, Israeli Phage Therapy Center (IPTC) Study Team. Compassionate Use of Bacteriophages for Failed Persistent Infections During the First 5 Years of the Israeli Phage Therapy Center. Open Forum Infect Dis 2023;10:doi:10.1093/ofid/ofad221. 
  7. Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol 2020;5:465–472. 
  8. Pirnay J-P, Djebara S, Steurs G, Griselain J, Cochez C, Soir SD et al. Retrospective, observational analysis of the first one hundred consecutive cases of personalized bacteriophage therapy of difficult-to-treat infections facilitated by a Belgian consortium. 2023;doi:10.1101/2023.08.28.23294728. 
  9. Young MJ, Hall LML, Merabishvilli M, Pirnay J-P, Clark JR, Jones JD. Phage Therapy for Diabetic Foot Infection: A Case Series. Clin Ther 2023;45:797–801.
  10. Jones JD, Downie S, Dunn J, Nicol G, Munteanu D. Turning a new phage on bone and joint infections. J Trauma Orthop 2023;11.
  11. Simpson EA, Stacey HJ, Langley RJ, Jones JD. Phage therapy: Awareness and demand among clinicians in the United Kingdom. PLOS ONE 2023;doi:10.1371/journal.pone.0294190.
  12. UK Parliament Science, Innovation and Technology Committee. The antimicrobial potential of bacteriophages. Accessed April 2024. Available at: committees.parliament.uk/work/7045/the-antimicrobial-potential-of-bacteriophages/
  13. Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022;14:427.
  14. Aslam S. Bacteriophage therapy as a treatment option for transplant infections. Curr Opin Infect Dis 2020;33:298–303.
  15. Mu A, McDonald D, Jarmusch AK, Martino C, Brennan C, Bryant M et al. Assessment of the microbiome during bacteriophage therapy in combination with systemic antibiotics to treat a case of staphylococcal device infection. Microbiome 2021;9:92.
  16. Stacey HJ, De Soir S, Jones JD. The Safety and Efficacy of Phage Therapy: A Systematic Review of Clinical and Safety Trials. Antibiotics 2022;11:1340.
  17. Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect Dis 2022;doi:10.1016/S1473-3099(21)00612-5.
  18. National Library of Medicine. Clinical trials of phage therapy. Accessed April 2024. Available at: www.clinicaltrials.gov/search?term=phage%20therapy&aggFilters=status:rec%20act
  19. Scottish Health Technologies Group HIS. SHTG Recommendation 2023. Accessed February 2023. Available at: shtg.scot/our-advice/bacteriophage-therapy-for-patients-with-difficult-to-treat-bacterial-infections/
  20. Suh GA, Lodise TP, Tamma PD, Knisely JM, Alexander J, Aslam S et al. Considerations for the Use of Phage Therapy in Clinical Practice. Antimicrob Agents Chemother 2022;doi.org/10.1128/AAC.02071-21.
  21. Jones JD, Stacey HJ, Brailey A, Suleman M, Langley RJ. Managing Patient and Clinician Expectations of Phage Therapy in the United Kingdom. Antibiotics 2023;12:502.
  22. World Economic Forum. Top 10 Emerging Technologies of 2023. Accessed April 2024. Available at: www.weforum.org/publications/top-10-emerging-technologies-of-2023/
  23. Suleman M, Clark JR, Bull S, Jones JD. Ethical argument for establishing good manufacturing practice for phage therapy in the UK. J Med Ethics 2024;doi:10.1136/jme-2023-109423.
  24. Lin RCY. Building a sustainable ecosystem for phage therapy. Accessed February 2023. Available at: www.phageaustralia.org/blog/sustainable-phage-therapy
  25. UK Phage Therapy. Writ Suppl Evid Dr Josh Jones UK Phage Ther 00045 2023. Accessed June 2023. Available at: committees.parliament.uk/writtenevidence/120992/default/

New friends for old enemies: Using bacteriophages to tackle tuberculosis and other mycobacteria

  1. Swift BMC, Meade N, Barron ES, Bennett M, Perehenic T, Hughes V et al. The development and use of Actiphage® to detect viable mycobacteria from bovine tuberculosis and Johne's disease-infected animals. Microb Biotechnol 2020;13:738–746.
  2. World Health Organization. Global tuberculosis report 2023. 2023. Available at: www.who.int/tb/publications/global_report/en/       
  3. World Organisation for Animal Health. Roadmap for zoonotic tuberculosis. 2017. Available at: www.woah.org/app/uploads/2021/03/roadmap-zoonotic-tb.pdf 
  4. Ramos B, Pereira AC, Reis AC, Cunha MV. Estimates of the global and continental burden of animal tuberculosis in key livestock species worldwide: A meta-analysis study. One Health 2020;10:100169.
  5. Ramanujam H, Palaniyandi K. 2023. Bovine tuberculosis in India: The need for One Health approach and the way forward. One Health 2023;16:100495
  6. Garvey M. Mycobacterium avium paratuberculosis: A disease burden on the dairy industry. Animals (Basel) 2020;10:1773.
  7. Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol 2023;14:1194923.
  8. Kolia-Diafouka P, Godreuil S, Bourdin A, Carrère-Kremer S, Kremer L, Van de Perre P, Tuaillon E. Optimized lysis-extraction method combined with IS6110-amplification for detection of mycobacterium tuberculosis in paucibacillary sputum specimens. Front Microbiol 2018;9:2224.
  9. Swift BMC and Rees CED. The specificity of phage testing for MAP — where might it fit into the diagnostic armoury? UK-Vet Livestock 2019;24:4. 
  10. Hamada Y, den Boon S, Cirillo DM, Penn-Nicholson A, Ruhwald M, Menzies D et al. Framework for the evaluation of new tests for tuberculosis infection. Eur Respir J 2021;58: 2004078.
  11. Schofield D, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage 2012;2:105–283.
  12. Verma R, Swift B, Handley-Hartill W, Lee J, Woltmann G, Rees C et al. A novel, high-sensitivity, bacteriophage-based assay identifies low-level mycobacterium tuberculosis bacteremia in immunocompetent patients with active and incipient tuberculosis, clinical infectious diseases. Clin Infect Dis 2020;70:933–926.
  13. Kim JW, Bowman K, Nazareth J, Lee J, Woltmann G, Verma R et al. 2024. PET-CT-guided characterisation of progressive, preclinical tuberculosis infection and its association with low-level circulating Mycobacterium tuberculosis DNA in household contacts in Leicester, UK: a prospective cohort study. Lancet Microbe 2024;5:e119–e130.

The wonders of the T-cell: Bispecific antibodies in diffuse large B cell lymphoma

  1. Dickinson M, Carlo-Stella C, Morschhauser F, Bachy E, Corradini P, Iacoboni G et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. NEJM 2022;387:2220–2231.
  2. Thieblemont C, Phillips T, Ghesquieres H, Cheah CY, Roost Clausen M, Cunningham D et al. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell–engaging antibody, in relapsed or refractory large B-cell lymphoma: Dose expansion in a phase I/II trial. J Clin Oncol. 2023;41:2238–47.

CRISPR-based treatment for hereditary angioedema

Further reading

Longhurst HJ, Lindsay K, Petersen RS, Fijen LM, Gurugama P, Maag D et al. CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N Engl J Med 2024;390:432–441.

References

  1. Walsh K, Cottingham P, Shaw C et al. CRISPR/Cas9-mediated KLKB1 gene editing and serum kallikrein reduction by NTLA-2002 remains durable in humanized mice following liver regeneration after partial hepatectomy. J Allergy Clin Immunol 2022;149:Suppl:AB169 (abstract).
  2. Longhurst H, Seitzer J, Boiselle C et al. NTLA-2002: CRISPR-mediated gene knockout of KLKB1 as a potential single-dose treatment for hereditary angioedema (HAE). Clin Exp Allergy 2022;52:1035.
  3. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland M et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. NEJM 2021;385:493–502.

Gene therapy in sickle cell and thalassaemia – where cutting edge science meets clinical need

  1. Gaudelli NM and Komor AC. Celebrating Rosalind Franklin's Centennial with a Nobel Win for Doudna and Charpentier. Mol Ther, 2020;28:2519–2520.
  2. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816–821.
  3. GBD 2021 Sickle Cell Disease Collaborators. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021. Lancet Haematol 2023;10:e585–e599.
  4. Ware RE, de Montalembert M, Tshilolo L and Abboud MR. Sickle cell disease. Lancet 2017;390:311–323.
  5. Taher AT, Weatherall DJ, and Cappellini MD. Thalassaemia. Lancet 2018; 391:155–167.
  6. Lettre G, Bauer DE. Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies. Lancet 2016;387:2554–2564.
  7. Ferrone FA. The delay time in sickle cell disease after 40 years: A paradigm assessed. Am J Hematol, 2015;90:438–445.
  8. Murray N, Serjeant BE, Serjeant GR. Sickle cell-hereditary persistence of fetal haemoglobin and its differentiation from other sickle cell syndromes. Br J Haematol 1988;69:89–92.
  9. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 1995;332:1317–1322.
  10. Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 2007;39:1197–1199.
  11. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008;322:1839–1842.
  12. Lu HY, Orkin SH, Sankaran VG. Fetal Hemoglobin Regulation in Beta-Thalassemia. Hematol Oncol Clin North Am 2023;37:301–312.
  13. Puthenveetil G, Scholes J, Carbonell D, Quershi N, Xia P et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 2004;104:3445–3453.
  14. Kanter J, Walters MC, Krishnamurti L, Mapara MY, Kwiatkowski JL, Rifkin-Zenenberg S et al. Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. N Engl J Med 2022;386:617–628.
  15. Locatelli F, Thompson AA, Kwiatkowski JL, Porter JB, Thrasher AJ et al. Betibeglogene Autotemcel Gene Therapy for Non-beta(0)/beta(0) Genotype beta-Thalassemia. N Engl J Med 2022;386:415–427.
  16. Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N Engl J Med 2021;384:205–215.
  17. Sharma A, Boelens J, Cancio M, Hankins JS, Bhad P, Azizy M et al. CRISPR-Cas9 Editing of the HBG1 and HBG2 Promoters to Treat Sickle Cell Disease. N Engl J Med 2023;389:820–832.
  18. Russell AL, Prince C, Lundgren TS, Knight KA, Denning G, Alexander JS et al. Non-genotoxic conditioning facilitates hematopoietic stem cell gene therapy for hemophilia A using bioengineered factor VIII. Mol Ther Methods Clin Dev 2021;21:710–727.
  19. Goyal S, Tisdale J, Schmidt M, Kanter J, Jaroscak J, Whitney D et al. Acute Myeloid Leukemia Case after Gene Therapy for Sickle Cell Disease. N Engl J Med 2022;386:138–147.
  20. Mayuranathan T, Newby GA, Feng R, Yao Y, Mayberry KD, Lazzarotto CR et al. Potent and uniform fetal hemoglobin induction via base editing. Nat Genet 2023;55:1210–1220.
  21. Li C, Wang H, Georgakopoulou A, Gil S, Yannaki E, Lieber A. In Vivo HSC Gene Therapy Using a Bi-modular HDAd5/35++ Vector Cures Sickle Cell Disease in a Mouse Model. Mol Ther 2021;29:822–837.
  22. Palani HK, Arunachalam AK, Yasar M, Venkatraman A, Kulkarni U, Lionel SA et al. Decentralized manufacturing of anti CD19 CAR-T cells using CliniMACS Prodigy(R): real-world experience and cost analysis in India. Bone Marrow Transplant 2023;58:160–167.
  23. Weatherall D. Gene transfection. A step nearer gene therapy? Nature 1984; 310:451.

Reviews and letters

Letter to the Editor – Global climate change alters patterns of disease: a veterinary medical perspective

  1. Summers BA. Climate change and animal disease (editorial). Veterinary Pathology 2009;46:1185–1186.
  2. Heffernan C. Climate change and multiple emerging infectious diseases. The Veterinary Journal 2008;234:43–47.
  3. Munson L, Terio KA, Kock R, Mlengeya T, Roelke ME, Dubovi E et al. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions. PLOS ONE 2008;doi:10.1371/journal.pone.0002545.
  4. Teo EJM, Russell H, Lambert T, Webster R, Yappa A, McDonagh P et al. The weather determines the number of cases of tick paralysis in dogs and cats in eastern Australia, caused by Ixodes holocyclus, the eastern paralysis tick.  Australian Vet J 2023;101:479–489.

People

Appreciation: Dr Charlotte Williamson OBE

  1. Williamson C, Wilkie P. Teaching medical students in general practice: respecting patients’ rights. Editorial. BMJ 1997;315:11108–11109.
  2. Wilkie P, Williamson C. Patients and Pathologists: the need for dialogue. The Bulletin 2001;114:25–27.
  3. Blumenthal D. Quality of Health Care – What is it? N Eng J Med 1996;335:891–893C.
  4. Williamson C. Whose Standards? Consumer and professional standards in health care. Oxford: OUP, 1992.
  5. Williamson, C. Towards the emancipation of patients. Patients’ experiences and the patient movement. Bristol: Policy Press, 2010.
  6. Williamson, C. Patients’ emancipation: towards equality. York: Quacks Books, 2021.