

UK Standards for Microbiology Investigations

Screening and monitoring for hepatitis E infection

"NICE has renewed accreditation of the process used by **Public Health England (PHE)** to produce **UK Standards for Microbiology Investigations**. The renewed accreditation is valid until **30 June 2021** and applies to guidance produced using the processes described in **UK standards for microbiology investigations (UKSMIs) Development process, S9365', 2016**. The original accreditation term began in **July 2011**."

Issued by the Standards Unit, National Infection Service, PHE Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 1 of 29

Acknowledgments

UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website <u>https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories</u>. UK SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations-steering-committee).

The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the medical editors for editing the medical content.

For further information please contact us at:

Standards Unit National Infection Service Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: standards@phe.gov.uk

Website: <u>https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories</u>

PHE publications gateway number: 2015261

UK Standards for Microbiology Investigations are produced in association with:

Logos correct at time of publishing.

Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 2 of 29 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England

Contents

Acknowledgments2
Amendment table4
UK SMI: scope and purpose5
Scope of document
Introduction9
1 Safety considerations
2 Specimen transport, storage and retention
Public health management
HEV infection in the immunocompetent – Screening with HEV IgM and IgG 14
HEV Infection in the immunocompetent - Screening with HEV IgM
HEV infection in the immunocompromised17
Monitoring of HEV during antiviral therapy for persistent HEV infection
Report comments
Notification to PHE, or equivalent in the devolved administrations
References

"NICE has renewed accreditation of the process used by **Public Health England (PHE)** to produce **UK Standards for Microbiology Investigations**. The renewed accreditation is valid until **30 June 2021** and applies to guidance produced using the processes described in **UK standards for microbiology investigations (UKSMIs) Development process, S9365', 2016**. The original accreditation term began in **July 2011**."

Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 3 of 29 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England

Amendment table

Each UK SMI method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from <u>standards@phe.gov.uk</u>.

New or revised documents should be controlled within the laboratory in accordance with the local quality management system.

Section(s) involved	Amendment
Anticipated next review date*	05.11.21
Insert issue number	1
Issue number discarded	-
Amendment number/date	-/05.11.18

*Reviews can be extended up to five years subject to resources available.

UK SMI[#]: scope and purpose

Users of UK SMIs

Primarily, UK SMIs are intended as a general resource for practising professionals operating in the field of laboratory medicine and infection specialties in the UK. UK SMIs also provide clinicians with information about the available test repertoire and the standard of laboratory services they should expect for the investigation of infection in their patients, as well as providing information that aids the electronic ordering of appropriate tests. The documents also provide commissioners of healthcare services with the appropriateness and standard of microbiology investigations they should be seeking as part of the clinical and public health care package for their population.

Background to UK SMIs

UK SMIs comprise a collection of recommended algorithms and procedures covering all stages of the investigative process in microbiology from the pre-analytical (clinical syndrome) stage to the analytical (laboratory testing) and post analytical (result interpretation and reporting) stages. Syndromic algorithms are supported by more detailed documents containing advice on the investigation of specific diseases and infections. Guidance notes cover the clinical background, differential diagnosis, and appropriate investigation of particular clinical conditions. Quality guidance notes describe laboratory processes which underpin quality, for example assay validation.

Standardisation of the diagnostic process through the application of UK SMIs helps to assure the equivalence of investigation strategies in different laboratories across the UK and is essential for public health surveillance, research and development activities.

Equal partnership working

UK SMIs are developed in equal partnership with PHE, NHS, Royal College of Pathologists and professional societies. The list of participating societies may be found at https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-qualityand-consistency-in-clinical-laboratories. Inclusion of a logo in an UK SMI indicates participation of the society in equal partnership and support for the objectives and process of preparing UK SMIs. Nominees of professional societies are members of the Steering Committee and Working Groups which develop UK SMIs. The views of nominees cannot be rigorously representative of the members of their nominating organisations nor the corporate views of their organisations. Nominees act as a conduit for two way reporting and dialogue. Representative views are sought through the consultation process. UK SMIs are developed, reviewed and updated through a wide consultation process.

Quality assurance

NICE has accredited the process used by the UK SMI Working Groups to produce UK SMIs. The accreditation is applicable to all guidance produced since October 2009. The process for the development of UK SMIs is certified to ISO 9001:2008.

[#] Microbiology is used as a generic term to include the two GMC-recognised specialties of Medical Microbiology (which includes Bacteriology, Mycology and Parasitology) and Medical Virology.

UK SMIs represent a good standard of practice to which all clinical and public health microbiology laboratories in the UK are expected to work. UK SMIs are NICE accredited and represent neither minimum standards of practice nor the highest level of complex laboratory investigation possible. In using UK SMIs, laboratories should take account of local requirements and undertake additional investigations where appropriate. UK SMIs help laboratories to meet accreditation requirements by promoting high quality practices which are auditable. UK SMIs also provide a reference point for method development. The performance of UK SMIs depends on competent staff and appropriate quality reagents and equipment. Laboratories should ensure that all commercial and in-house tests have been validated and shown to be fit for purpose. Laboratories should participate in external quality assessment schemes and undertake relevant internal quality control procedures.

Patient and public involvement

The UK SMI Working Groups are committed to patient and public involvement in the development of UK SMIs. By involving the public, health professionals, scientists and voluntary organisations the resulting UK SMI will be robust and meet the needs of the user. An opportunity is given to members of the public to contribute to consultations through our open access website.

Information governance and equality

PHE is a Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions. The development of UK SMIs are subject to PHE Equality objectives <u>https://www.gov.uk/government/organisations/public-health-england/about/equality-and-diversity</u>.

The UK SMI Working Groups are committed to achieving the equality objectives by effective consultation with members of the public, partners, stakeholders and specialist interest groups.

Legal statement

While every care has been taken in the preparation of UK SMIs, PHE and the partner organisations, shall, to the greatest extent possible under any applicable law, exclude liability for all losses, costs, claims, damages or expenses arising out of or connected with the use of an UK SMI or any information contained therein. If alterations are made by an end user to an UK SMI for local use, it must be made clear where in the document the alterations have been made and by whom such alterations have been made and also acknowledged that PHE and the partner organisations shall bear no liability for such alterations. For the further avoidance of doubt, as UK SMIs have been developed for application within the UK, any application outside the UK shall be at the user's risk.

The evidence base and microbial taxonomy for the UK SMI is as complete as possible at the date of issue. Any omissions and new material will be considered at the next review. These standards can only be superseded by revisions of the standard, legislative action, or by NICE accredited guidance.

UK SMIs are Crown copyright which should be acknowledged where appropriate.

Suggested citation for this document

Public Health England. (2018). Screening and monitoring for hepatitis E infection. UK Standards for Microbiology Investigations. V 53 Issue 1. <u>https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories</u>

Scope of document

Type of specimen

Whole blood, plasma, serum, faeces

This UK SMI covers the screening of blood, plasma and serum samples for Hepatitis E using HEV antibody enzyme immunoassay (EIA) screening. This document also covers the use of Nucleic Acid Amplification Tests (NAAT) for the detection of HEV RNA in plasma, serum and faeces samples for confirmation of HEV serology results, screening in the immunocompromised patient and monitoring of the treatment response. For information on treatment refer to European Association for the Study of the Liver (EASL) and for information on transplant patients refer to The Advisory Committee on the Safety of Blood, Tissues and Organs (SABTO) guidance.

This UK SMI should be used in conjunction with other UK SMIs.

Definitions

For all antigen, antibody and NAAT testing the following definitions apply:

During testing process

Reactive – Initial internal stage positive result pending confirmation

Not reactive - Initial internal stage negative result

Equivocal – Result is within the manufacturer's grey zone. Further testing is required.

The term 'equivocal' may be different for various platforms eg 'indeterminate'.

Reporting stage

These terms are used for final or preliminary reports.

Detected – Report-stage confirmed reactive result.

Not detected – Report-stage not reactive result.

Indeterminate – Reactive result that cannot be confirmed.

Inhibitory – The term 'inhibitory' may be different for various platforms eg 'invalid'.

Introduction

Hepatitis E virus (HEV) is increasingly common in the UK with an excess of 100,000 infections estimated to occur annually in England of which a minority, less than 1% are associated with clinically apparent disease^{1,2}.

HEV causes an acute infection, which may be associated with clinical hepatitis and can also result in a persistent infection in immunosuppressed hosts. Symptoms of HEV include jaundice, dark urine and pale stools and may be accompanied by tiredness, fever, nausea, vomiting, abdominal pain and loss of appetite (https://www.gov.uk/government/publications/hepatitis-e-symptoms-transmission-prevention-treatment/hepatitis-e-symptoms-transmission-treatment-and-prevention). There has been a year on year increase in case numbers since 2010 and HEV is currently the most common cause of acute viral hepatitis in England¹. Indigenously acquired infections have been linked to the consumption of pork products and diet remains the major route of autochthonous HEV acquisition¹.

There are four main HEV genotypes, G1-G4, which infect humans^{3,4}. Sequence and phylogenetic analysis shows genotype 3 viruses to be associated with indigenous infections in the UK. A number of G1 (and rarely G4) infections are imported into the UK each year following travel to a high incidence area. G1 (and G2) viruses are likely to cause severe illness in pregnancy, HEV G3 does not^{5,6}.

It is important to consider hepatitis E as a potential cause of viral hepatitis early on in the assessment of the patient ie as part of an initial acute viral hepatitis screen and as a cause of transaminitis in the immunosuppressed host. HEV is also an under-recognised cause of neurological presentations including brachial neuritis and peripheral neuropathy⁷⁻⁹.

Laboratory diagnosis

The clinical presentation of acute symptomatic hepatitis E infection cannot be distinguished from that of any other viral hepatitis. Although epidemiological features may suggest HEV infection in some cases, laboratory tests should always be performed to confirm any clinical diagnosis.

Hepatitis E testing should be carried out as part of an initial hepatitis screen in the investigation of acute clinical hepatitis alongside hepatitis A, B and C⁷. It might also be useful to do serology for CMV and EBV infection. The use of alanine transaminase (ALT) data for limiting the number of immunocompetent patients tested may be considered (ie screening for HEV infection on patients with ALT \geq 100 IU/L) although in many infections, such as in blood donors, the elevation of ALT may be slight or even absent¹⁰. PHE advise that anyone with unexplained clinical hepatitis, regardless of travel history be tested for HEV.

HEV symptomatic and non symptomatic infection in the immunocompetent

Serology supported by the detection of viral nucleic acid is the principal way in which hepatitis E is diagnosed in immunocompetent patients. Asymptomatic HEV infection is sought in donors of blood, tissue and organs by nucleic acid testing alone. Recombinant capsid proteins are used in assays of different format for the detection of antibody to HEV¹¹. Although there are four human HEV genotypes, they elicit very

similar antibody responses and appear to represent a single serotype¹²⁻¹⁵. For symptomatic infections, the serological response becomes detectable just prior to the maximal liver injury, potentially coinciding with the onset of symptoms. IgM anti-HEV precedes IgG detection, and is usually short lived but can remain detectable at decreasing levels for several months and may persist for extended periods in a small number of individuals. The significance of this is not known¹³.

IgG antibody appears shortly after IgM and the IgG reactivity rises rapidly in the recovery period. High level reactivity for anti-HEV IgG with low or high negative IgM is seen in samples taken after viral clearance and following recovery from jaundice in the symptomatic patients. The IgG response can persist for several years and may be lifelong in the majority of patients recovered from HEV infection¹⁶.

Laboratory diagnostic criteria can be drawn up to account for the variability in natural immune responses and assay performance. An acute case of hepatitis E infection with or without symptomatic presentation is best defined by having HEV RNA positive serum or plasma and coincident IgM and IgG anti-HEV reactivity¹⁷. Other combinations of IgG and IgM results may be best interpreted according to antibody titre/reactivity levels but IgM reactivity on its own is not secure. The failure of IgG antibody seroconversion in a patient previously sero-reactive soley for IgM confirms the non-specificity of the initial IgM reactivity¹⁷. The duration of viraemia in the immunocompetent patient is of the order of eight weeks¹⁷. In a patient presenting with hepatitis E, plasma viraemia and antigenaemia will fall away quickly in the recovery period and it is not unusual to fail to detect HEV RNA in plasma samples taken a few weeks after the onset of jaundice.

HEV infection in the immunocompromised

Testing for HEV may also be considered as part of the initial investigation of unexplained elevation of plasma transaminases (eg ALT) in immunocompromised individuals and in individuals with acute neurological presentations consistent with hepatitis E infection¹⁸. For immunocompromised patients, who may have a delayed or absent antibody response, screening for HEV viraemia by RNA with NAAT is essential¹⁷.

Detection of HEV viraemia without detectable HEV antibodies in the presence of an abnormal ALT may not equate to acute HEV infection, but could be the result of previously undiagnosed persistent infection in the immunosuppressed patient¹⁹.

In those patients who are immunocompromised either through coincident infections (for example HIV) and immune-diatheses (loss of immune function for a variety of systematic diseases) or following transplantation or chemotherapy (solid organ transplants, stem cell transplants and haematology-oncology) or systemic immunosuppressive therapy (inflammatory bowel, renal/vascular, and arthridites), the early phases of the infection may be without symptoms. In the immunosuppressed patient, virus replication may persist for months or years in the absence of development of serological markers; this may occur with little elevation of serum transaminases. Minimal elevation of LFTs may be a surrogate marker for persistent HEV infection and an indicator for testing for viraemia in immunocompromised patients¹⁷. Up to half of all initially diagnosed acute infections in the immunocompromised may clear spontaneously. When this clearance occurs in the face of immune recovery, for example during haematological remission it may often be

associated with seroconversion, sometimes presenting as hepatitis recovery. Infections, which do not clear, may persist for years with or without antibody.

For this reason it is recommended that a follow up sample is taken four weeks after the first detection of HEV viraemia in an immunocompromised individual and tested both for antibody and viraemia. This will confirm the initial finding and help differentiate between an acute resolving infection (perhaps with seroconversion) and a possible persistent infection if viral load levels are maintained. Where opportunity exists, previous archived samples may be used to investigate potential persistence and results may inform on the length of infection.

In monitoring of HEV RNA levels during antiviral therapy of persistent chronic HEV infection, it is recommended that monthly HEV RNA testing is undertaken on faeces and plasma. HEV RNA is detectable in the stool some considerable time before viraemia, and for approximately four weeks after the clearance of detectable viraemia. There are reports of more prolonged faecal shedding of virus. Infections in patients with persisting detectable viral faecal shedding at the termination of anti-viral treatment are very likely to suffer viral recrudescence and it is recommended to continue therapy until two sequential stool samples taken four weeks apart are found to be free of detectable virus^{20,21}.

Commercial HEV RNA assays may not be validated for all sample types listed above. Manufacturers' recommendations should be followed and all kits should be validated, verified and deemed fit for purpose prior to use.

Established persistent hepatitis infection²²

Persistent hepatitis E infection can result in chronic liver disease and rapidly progressive liver fibrosis and cirrhosis with death due to decompensated liver disease. Persistence is defined as remaining viraemic for at least 3 months. Persistence of an unchanged viral load over a period of one month suggests that a persistent infection is very likely. Data from the transplant setting have shown that a reduction in levels of immune suppression led to viral clearance in 30% of cases²³⁻²⁵. Clearance in this setting is usually associated with sero-conversion and frequently with a transaminitis.

In patients with persistent HEV infection treatment is usually ribavirin monotherapy though this usage remains unlicensed. A rapid reduction in viral load during the first week of therapy may indicate an increased likelihood of developing a sustained viral response (SVR)²⁶. Antiviral treatment with pegylated interferon and/or ribavirin has also been used successfully to treat persistent HEV infections where alteration of immune suppression has either been impossible or ineffective²³⁻²⁵.

Confirmation of viral clearance

It is important to confirm stool clearance before terminating anti-viral treatment. Infections in patients with continuing detectable viral faecal shedding at the end of treatment are liable to recrudesce and it is wise to continue therapy until two sequential stool samples one month apart are found to be free of detectable virus. This confirms the end of treatment response (ETR). A significant proportion of patients achieving ETR clearance will suffer viral recrudescence of the original infection, confirmable by viral phylogeny, usually associated with a return of ALT elevation. For this reason it is recommended to consider retesting for viraemia at 6 months, or earlier at any sign of a return of transaminitis, in order to confirm a standard virological response (SVR) for viral clearance.

HEV infection in pregnancy

In cases of pregnant women who are found to be HEV-infected, particularly in those who have travelled abroad during the incubation period, it is recommended that samples are referred to a reference laboratory for genotyping. There is an increased risk of more serious illness in those with a genotype 1 (G1) infection. Genotype G3 is the dominant virus in the UK and there is no evidence to suggest that G3 infections are associated with severe outcomes in pregnancy^{1,7}.

Technical information/limitations

Limitations of UK SMIs

The recommendations made in UK SMIs are based on evidence (eg sensitivity and specificity) where available, expert opinion and pragmatism, with consideration also being given to available resources. Laboratories should take account of local requirements and undertake additional investigations where appropriate. Prior to use, laboratories should ensure that all commercial and in-house tests have been validated and are fit for purpose.

Specimen containers^{27,28}

UK SMIs use the term "CE marked leak proof container" to describe containers bearing the CE marking used for the collection and transport of clinical specimens. The requirements for specimen containers are given in the EU in vitro Diagnostic Medical Devices Directive (98/79/EC Annex 1 B 2.1) which states: "The design must allow easy handling and, where necessary, reduce as far as possible contamination of and leakage from, the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate for these purposes".

1 Safety considerations²⁷⁻⁴⁴

1.1 Specimen collection, transport and storage^{27-32,45}

Use aseptic technique.

Collect adequate and appropriate specimens in appropriate CE marked leak proof containers and transport in sealed plastic bags.

Compliance with postal, transport and storage regulations is essential.

1.2 Specimen processing

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet³⁵.

Refer to current guidance on the safe handling of all organisms documented in this UK SMI.

The above guidance should be supplemented with local COSHH and risk assessments.

2 Specimen transport, storage and retention^{27,28}

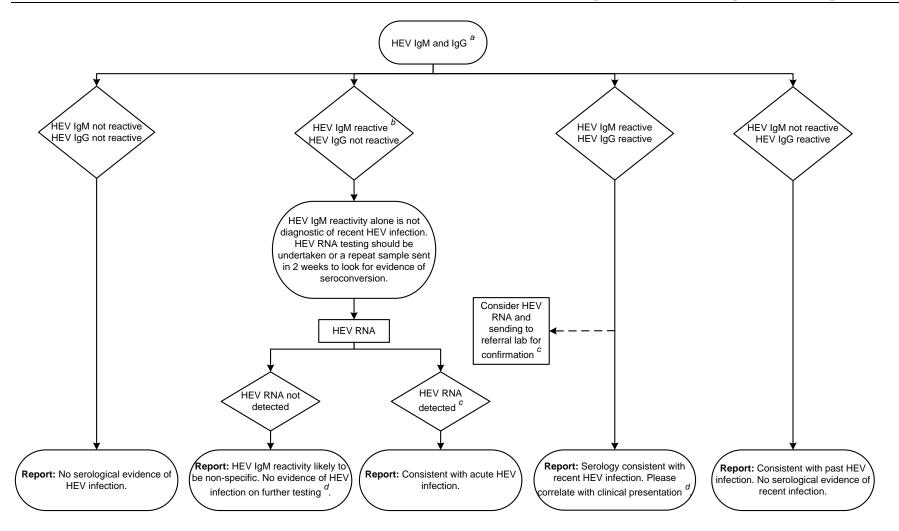
2.1 Optimal transport and storage conditions

Specimens should be transported and processed as soon as possible⁴⁶.

If processing is delayed, refrigeration is preferable to storage at ambient temperature⁴⁶ and should be in accordance with manufacturers' instructions.

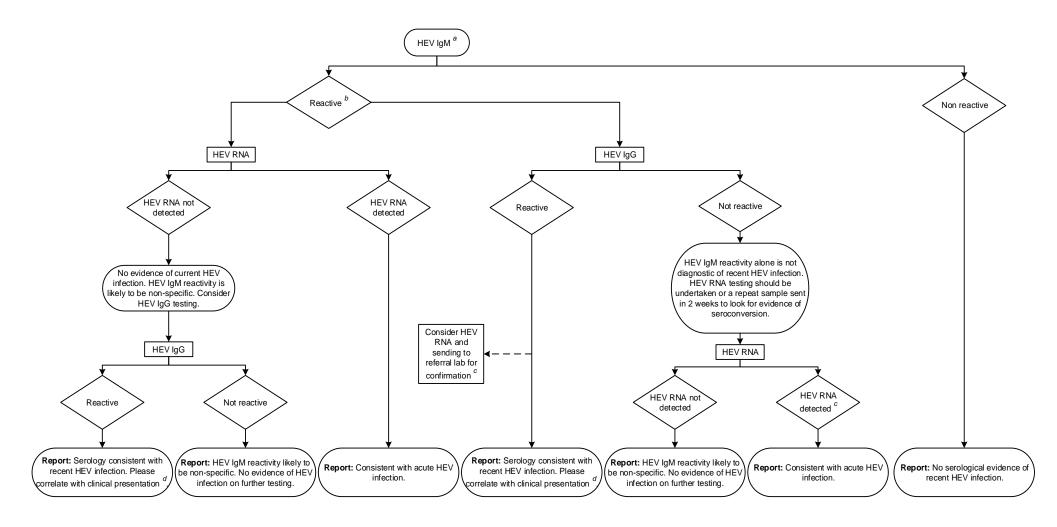
Samples should be retained in accordance with The Royal College of Pathologists guidelines 'The retention and storage of pathological records and specimens'⁴⁷.

Public health management


For information regarding notification to PHE (or equivalent in the devolved administrations) refer to page 16.

For further information on public health management refer to PHE guidance⁷: <u>http://www.gov.uk/government/publications/hepatitis-e-health-protection-response-to-reports-of-infection</u>.

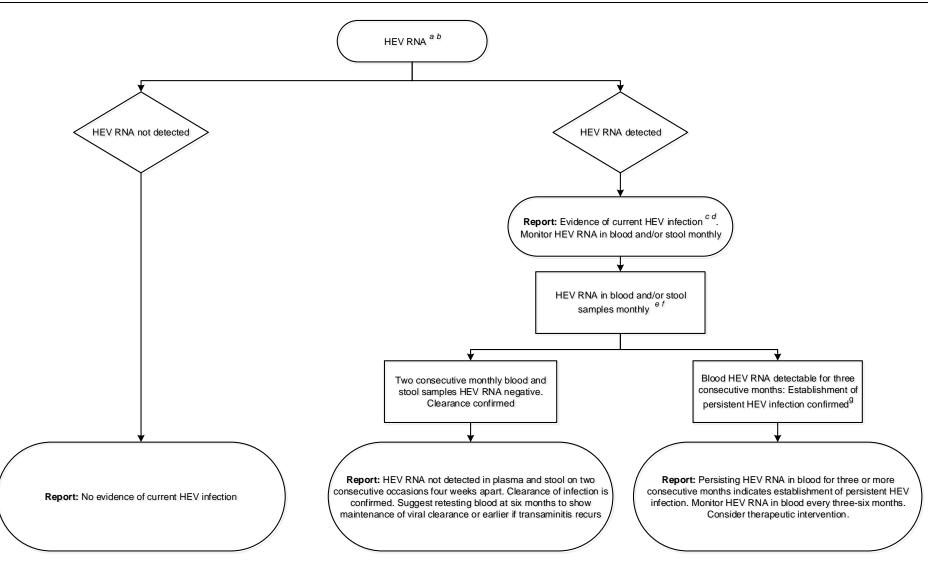
A structured enhanced surveillance questionnaire is available for laboratory confirmed cases of hepatitis E (as defined in the case definition) at: https://www.gov.uk/government/publications/hepatitis-e-surveillance-form


Also refer to Health and Safety Executive guidance for employers and employees: <u>http://www.hse.gov.uk/pubns/indg342.pdf</u>.

HEV infection in the immunocompetent – Screening with HEV IgM and IgG^{5,19}

Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 14 of 29

HEV Infection in the immunocompetent - Screening with HEV IgM

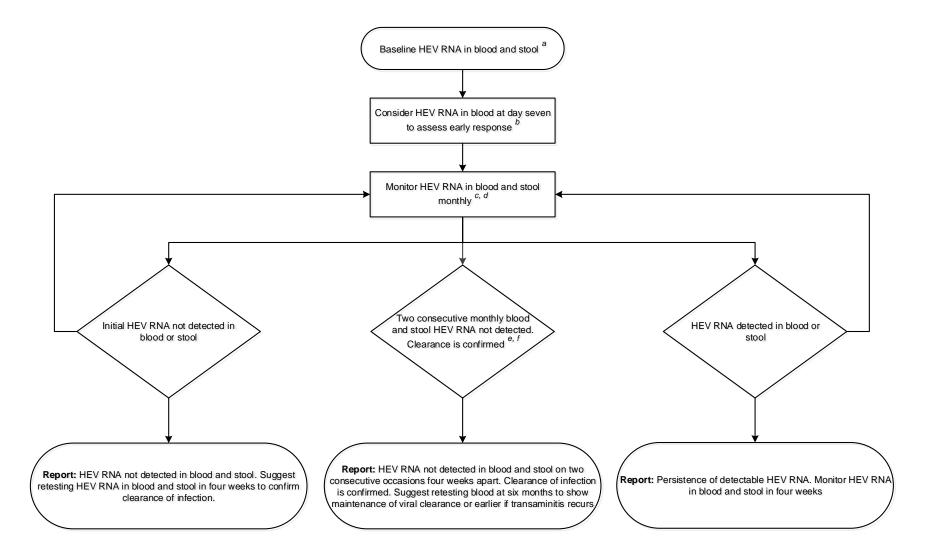


Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 15 of 29

Footnotes - HEV infection in the immunocompetent algorithm

- a. Initial screening may be undertaken with HEV IgM or a combination of HEV IgM and IgG depending on local laboratory requirements.
- b. The detection of HEV IgM alone is not diagnostic of HEV infection as the specificity of the assays is often low. In laboratories where initial screening is undertaken with HEV IgM only further testing with HEV RNA or HEV IgG is recommended where the IgM is reactive.
- c. Consider sending to referral laboratory for genotyping and phylogenetic sequencing. Genotyping is recommended when investigating infections during pregnancy.
- d. The significance of a reactive HEV IgM result needs to be interpreted after careful consideration of the clinical presentation, IgM index and the exclusion of other possible causes.

HEV infection in the immunocompromised^{5,19,48}



Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 17 of 29

Footnotes - HEV infection in the immunocompromised algorithm

- a. A quantitative assay should be used in accordance with the WHO International Standard.
- b. In patients with conditions associated with immunosuppression (for example HIV infection, lymphoma and leukaemia) and in solid organ transplant recipients, HEV RNA testing is essential for the diagnosis of HEV infection. In these patients seroconversion is often delayed, and may not occur. If seroconversion does occur it is not necessarily associated with viral clearance.
- c. Previous archived samples may be used in the investigation of persistent infection to identify length of infection.
- d. Antibody results where available may inform patient management.
- e. Quantitative HEV RNA viral load monitoring may provide further information regarding the dynamics of the HEV infection:
 - i. Decreasing HEV RNA viral load suggests a resolving infection.
 - ii. Increasing HEV RNA viral load suggests a developing recent infection.
 - iii. Unchanged HEV RNA viral load suggests an established persistent infection.
- f. An alternative to monitoring HEV RNA in both blood and stool is to monitor HEV RNA in blood until it is not detected and then to monitor blood and stool until clearance is confirmed.
- g. Refer to monitoring algorithm for persistent HEV infection during antiviral therapy.

Monitoring of HEV during antiviral therapy for persistent HEV infection

Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 19 of 29

Footnotes - Monitoring of HEV during antiviral therapy for persistent/chronic HEV infection algorithm

- a. A quantitative assay should be used in accordance with the WHO International Standard.
- b. A rapid fall in the first week of treatment is a good predictor of an eventual sustained virological response to antiviral therapy²⁰.
- c. A decreasing HEV RNA viral load is likely to represent resolving infection.
- d. An alternative to monitoring HEV RNA in both blood and stool is to monitor HEV RNA in blood until it is not detected and then to monitor blood and stool until clearance is confirmed.
- e. Relapse may be detected by a return of detectable HEV RNA in either, or both, blood and stool.
- f. Relapse of HEV infection following cessation of antiviral therapy is commonly associated with ongoing viral shedding in stool samples at the end of treatment. Therefore it is good practice to ensure HEV RNA stool clearance has occurred in 2 stool samples 4 weeks apart prior to stopping treatment²⁰.

Report comments

Immunocompetent patient

	HEV IgM	HEV IgG	HEV RNA in blood	Interpretative Comment	Notes
1	Not Reactive	Not tested	Not tested	No serological evidence of recent HEV infection	
2	Not Reactive	Not Reactive	Not tested	No serological evidence of HEV infection.	
3	Not Reactive	Reactive	Not tested	Consistent with past HEV infection. No serological evidence of recent infection.	
4	Reactive	Not tested	Not Detected	No evidence of current HEV infection. HEV IgM reactivity is likely to be non-specific. Consider HEV IgG testing.	
5	Reactive	Not tested	Detected	Consistent with acute HEV infection.	
6	Reactive	Not Reactive	Not tested	HEV IgM reactivity alone is not diagnostic of recent HEV infection. HEV RNA testing should be undertaken or a repeat sample sent in 2 weeks to look for evidence of seroconversion.	The detection of HEV IgM alone is not diagnostic of HEV infection as the specificity of the assays is often low.
7	Reactive	Not Reactive	Not Detected	HEV IgM reactivity likely to be non-specific. No evidence of HEV infection on further testing.	
8	Reactive	Not Reactive	Detected	Consistent with acute HEV infection.	
9	Reactive	Reactive	Not detected	Serology consistent with recent HEV infection or non- specific IgM reactivity. HEV RNA not detected.	The significance of a reactive HEV IgM result needs to be interpreted after careful consideration of the clinical presentation, IgM index and the exclusion of other

Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 21 of 29

					possible causes.
10	Reactive	Reactive	Detected	Consistent with acute HEV infection.	
11	Reactive	Reactive	Not tested	Serology consistent with recent HEV infection. Please correlate with clinical presentation and consider HEV RNA testing.	The significance of a reactive HEV IgM result needs to be interpreted after careful consideration of the clinical presentation, IgM index and the exclusion of other possible causes. HEV RNA testing should be considered for confirmation.

	HEV RNA in blood	HEV RNA in stool	Interpretative Comments	Notes
1	Not detected	Not tested	No evidence of current HEV infection	
			Base line sample	
2	Detected	Not tested	Evidence of current HEV infection. Monitor HEV RNA in blood and/or stool monthly.	In patients with conditions associated with immunosuppression (for example HIV infection, lymphoma and leukaemia) and in solid organ transplant recipients, HEV RNA testing is essential for the diagnosis of acute and persistent HEV infection. In these patients seroconversion is often delayed, and may not occur. If seroconversion does occur it is not necessarily associated with viral clearance.
				Previous archived samples may be used in the investigation of persistent infection to identify length of infection.
			Monitoring samples	
	Detected	Detected or Not tested	Detectable for ≥3 consecutive months: Persisting HEV RNA in blood for three or more consecutive months indicated establishment of persistent HEV infection. Monitor HEV RNA in blood every three-six months. Consider therapeutic intervention.	Quantitative HEV RNA viral load monitoring may provide further information regarding the dynamics of the HEV infection:
				 Decreasing HEV RNA viral load suggests a resolving infection.
3				 Increasing HEV RNA viral load suggests a developing recent infection.
				 Unchanged HEV RNA viral load suggests an established persistent infection.
				An alternative to monitoring HEV RNA in both blood and stool is to monitor HEV RNA in blood until it is not detected and then to monitor blood and stool until clearance is confirmed.
				Refer to monitoring algorithm for persistent HEV infection during antiviral therapy.

Immunocompromised patient*

Virology | V 53 | Issue no: 1 | Issue date: 12.11.18 | Page: 23 of 29 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England

			Two consecutive monthly blood and stool samples HEV RNA negative.	
4	Not detected	Not detected	HEV RNA not detected in plasma and stool on two consecutive occasions 4 weeks apart. Clearance of infection is confirmed. Suggest retesting blood at six months to show maintenance of viral clearance or earlier if transaminitis recurs.	

^{*}The clinical significance of a detectable serological response (any combination of IgM/IgG) in an immunocompromised patient is uncertain and does not always correlate with likelihood of clearance. In particular, the detection of anti-HEV IgM should not be used to infer a recent infection and the use of HEV serology is not part of the routine diagnostic algorithm.

Notification to PHE^{49,50}, or equivalent in the devolved administrations⁵¹⁻⁵⁴

The Health Protection (Notification) regulations 2010 require diagnostic laboratories to notify Public Health England (PHE) when they identify the causative agents that are listed in Schedule 2 of the Regulations. Notifications must be provided in writing, on paper or electronically, within seven days. Urgent cases should be notified orally and as soon as possible, recommended within 24 hours. These should be followed up by written notification within seven days.

For the purposes of the Notification Regulations, the recipient of laboratory notifications is the local PHE Health Protection Team. If a case has already been notified by a registered medical practitioner, the diagnostic laboratory is still required to notify the case if they identify any evidence of an infection caused by a notifiable causative agent.

Notification under the Health Protection (Notification) Regulations 2010 does not replace voluntary reporting to PHE. The vast majority of NHS laboratories voluntarily report a wide range of laboratory diagnoses of causative agents to PHE and many PHE Health Protection Teams have agreements with local laboratories for urgent reporting of some infections. This should continue.

Note: The Health Protection Legislation Guidance (2010) includes reporting of Human Immunodeficiency Virus (HIV) & Sexually Transmitted Infections (STIs), Healthcare Associated Infections (HCAIs) and Creutzfeldt–Jakob disease (CJD) under 'Notification Duties of Registered Medical Practitioners': it is not noted under 'Notification Duties of Diagnostic Laboratories'.

https://www.gov.uk/government/organisations/public-health-england/about/ourgovernance#health-protection-regulations-2010

Other arrangements exist in <u>Scotland</u>^{51,52}, <u>Wales</u>⁵³ and <u>Northern Ireland</u>⁵⁴.

References

Modified GRADE table used by UK SMIs when assessing references

Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) is a systematic approach to assessing references. A modified GRADE method is used in UK SMIs for appraising references for inclusion. Each reference is assessed and allocated a grade for strength of recommendation (A-D) and quality of the underlying evidence (I-VIII). A summary table which defines the grade is listed below and should be used in conjunction with the reference list.

Quality/certainty of evidence	Types of evidence	
A Strongly recommended	I Evidence from randomised controlled trials, meta-analysis and systematic reviews	
B* Recommended but other alternatives may be acceptable	II Evidence from non-randomised studies	
	III Evidence from documents describing techniques, methods or protocols	
C* Weakly recommended: seek alternatives	IV Non-analytical studies, eg case reports, reviews, case series	
D Never recommended	V Expert opinion and wide acceptance as good practice but with no study evidence	
	VI Required by legislation, code of practice or national standard/ guideline	
	VII Letter /short communication /editorials /conference communication	
	VIII Electronic citation	

- 1. Ijaz S, Said B, Boxall E, Smit E, Morgan D, Tedder RS. Indigenous hepatitis E in England and wales from 2003 to 2012: evidence of an emerging novel phylotype of viruses. The Journal of infectious diseases 2014;209:1212-8. **A**, **II**
- 2. Hewitt PE, Ijaz S, Brailsford SR, Brett R, Dicks S, Haywood B et al. Hepatitis E virus in blood components: a prevalence and transmission study in southeast England. The Lancet;384:1766-73. **A**, **I**
- 3. Perez-Gracia MT, Suay B, Mateos-Lindemann ML. Hepatitis E: an emerging disease. Infect Genet Evol 2014;22:40-59. **C, III**
- 4. Lewis HC, Wichmann O, Duizer E. Transmission routes and risk factors for autochthonous hepatitis E virus infection in Europe: a systematic review. Epidemiol Infect 2010;138:145-66. **A**, **I**
- 5. Kamar N, Dalton HR, Abravanel F, Izopet J. Hepatitis E virus infection. ClinMicrobiolRev 2014;27:116-38. **A, III**

- 6. Ankcorn M, Evans C, Green ST. Acute painless hepatitis in pregnancy--a cause for concern? BMJ 2014;349:g7686. **C**, **III**
- 7. Public Health England. Public health operational guidelines for hepatitis E Health protection response to reports of hepatitis E infection. 01/2015. **A**, **V**
- Deroux A, Brion JP, Hyerle L, Belbezier A, Vaillant M, Mosnier E et al. Association between hepatitis E and neurological disorders: two case studies and literature review. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 2014;60:60-2.
 A, III
- 9. Woolson KL, Forbes A, Vine L, Beynon L, McElhinney L, Panayi V et al. Extra-hepatic manifestations of autochthonous hepatitis E infection. Alimentary pharmacology & therapeutics 2014;40:1282-91. **A**, **II**
- 10. Harvala H, Wong V, Simmonds P, Johannessen I, Ramalingam S. Acute viral hepatitis should the current screening strategy be modified? Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 2014;59:184-7. **A**, **II**
- 11. Behloul N, Wen J, Dai X, Dong C, Meng J. Antigenic composition and immunoreactivity differences between HEV recombinant capsid proteins generated from different genotypes. Infect Genet Evol 2015;34:211-20. **A**, **II**
- Tremeaux P, Lhomme S, Chapuy-Regaud S, Peron JM, Alric L, Kamar N et al. Performance of an antigen assay for diagnosing acute hepatitis E virus genotype 3 infection. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 2016;79:1-5.
 B, II
- 13. Huang S, Zhang X, Jiang H, Yan Q, Ai X, Wang Y et al. Profile of Acute Infectious Markers in Sporadic Hepatitis E. PLOS ONE 2010;5:e13560. **B, II**
- 14. Engle RE, Yu C, Emerson SU, Meng XJ, Purcell RH. Hepatitis E virus (HEV) capsid antigens derived from viruses of human and swine origin are equally efficient for detecting anti-HEV by enzyme immunoassay. J Clin Microbiol 2002;40:4576-80. **B**, **II**
- 15. Emerson SU, Clemente-Casares P, Moiduddin N, Arankalle VA, Torian U, Purcell RH. Putative neutralization epitopes and broad cross-genotype neutralization of Hepatitis E virus confirmed by a quantitative cell-culture assay. The Journal of general virology 2006;87:697-704. **B**, **II**
- 16. Khuroo MS, Khuroo MS. Hepatitis E: an emerging global disease from discovery towards control and cure. Journal of viral hepatitis 2016;23:68-79. **B**, **III**
- 17. Ankcorn MJ, Tedder RS. Hepatitis E: the current state of play. Transfusion medicine (Oxford, England) 2017;27:84-95. **B, III**
- 18. Kamar N, Bendall RP, Peron JM, Cintas P, Prudhomme L, Mansuy JM et al. Hepatitis E virus and neurologic disorders. Emerging infectious diseases 2011;17:173-9. **B**, **II**
- 19. Pas SD, Streefkerk RH, Pronk M, de Man RA, Beersma MF, Osterhaus AD et al. Diagnostic performance of selected commercial HEV IgM and IgG ELISAs for immunocompromised and immunocompetent patients. JClinVirol 2013;58:629-34. **B**, **II**
- 20. British Transplantation Society. Guidelines for Hepatitis E & Solid Organ Transplantation 2017. 1-54. **B**, **V**
- 21. Abravanel F, Lhomme S, Rostaing L, Kamar N, Izopet J. Protracted fecal shedding of HEV during ribavirin therapy predicts treatment relapse. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2015;60:96-9. **B**, **II**

- 22. Kamar N, Abravanel F, Lhomme S, Rostaing L, Izopet J. Hepatitis E virus: chronic infection, extra-hepatic manifestations, and treatment. Clin Res Hepatol Gastroenterol 2015;39:20-7. **C**, **III**
- 23. Kamar N, Garrouste C, Haagsma EB, Garrigue V, Pischke S, Chauvet C et al. Factors associated with chronic hepatitis in patients with hepatitis E virus infection who have received solid organ transplants. Gastroenterology 2011;140:1481-9. **B**, **III**
- 24. Kamar N, Mallet V, Izopet J. Ribavirin for chronic hepatitis E virus infection. The New England journal of medicine 2014;370:2447-8. **B**, **II**
- 25. Dalton HR, Keane FE, Bendall R, Mathew J, Ijaz S. Treatment of chronic hepatitis E in a patient with HIV infection. Annals of internal medicine 2011;155:479-80. **B**, **VI**
- 26. Kamar N, Lhomme S, Abravanel F, Cointault O, Esposito L, Cardeau-Desangles I et al. An Early Viral Response Predicts the Virological Response to Ribavirin in Hepatitis E Virus Organ Transplant Patients. Transplantation 2015;99:2124-31. **B**, **II**
- 27. European Parliament. UK Standards for Microbiology Investigations (SMIs) use the term "CE marked leak proof container" to describe containers bearing the CE marking used for the collection and transport of clinical specimens. The requirements for specimen containers are given in the EU in vitro Diagnostic Medical Devices Directive (98/79/EC Annex 1 B 2.1) which states: "The design must allow easy handling and, where necessary, reduce as far as possible contamination of, and leakage from, the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate for these purposes". 1998. **A**, **VI**
- 28. Official Journal of the European Communities. Directive 98/79/EC of the European Parliament and of the Council of 27 October 1998 on *in vitro* diagnostic medical devices 1998. 1-37. **A, VI**
- 29. Health and Safety Executive. Safe use of pneumatic air tube transport systems for pathology specimens. 2009. **A**, **VI**
- 30. Department for transport. Transport of Infectious Substances, 2011 Revision 5. 2011. A, VI
- 31. World Health Organization. Guidance on regulations for the Transport of Infectious Substances 2017-2018. 2017. **A**, **VI**
- 32. Home Office. Anti-terrorism, Crime and Security Act. 2001. A, VI
- 33. Advisory Committee on Dangerous Pathogens. The Approved List of Biological Agents. Health and Safety Executive 2013. 1-35. **A**, **VI**
- 34. Advisory Committee on Dangerous Pathogens. Infections at work: Controlling the risks. Her Majesty's Stationery Office 2003. **A**, **VI**
- 35. Advisory Committee on Dangerous Pathogens. Biological agents: Managing the risks in laboratories and healthcare premises. Health and Safety Executive 2005. **A**, **V**
- 36. Advisory Committee on Dangerous Pathogens. Biological Agents: Managing the Risks in Laboratories and Healthcare Premises. Appendix 1.2 Transport of Infectious Substances Revision. Health and Safety Executive 2008. **A**, **VI**
- 37. Centers for Disease Control and Prevention. Guidelines for Safe Work Practices in Human and Animal Medical Diagnostic Laboratories. MMWR Surveill Summ 2012;61:1-102. **A**, VI
- Health and Safety Executive. Control of Substances Hazardous to Health Regulations. The Control of Substances Hazardous to Health Regulations 2002 (as amended). HSE Books,. 2013. A, VI

- 39. Health and Safety Executive. Five Steps to Risk Assessment: A Step by Step Guide to a Safer and Healthier Workplace. HSE Books, 2002. **A**, **VI**
- 40. Health and Safety Executive. A Guide to Risk Assessment Requirements: Common Provisions in Health and Safety Law. HSE Books, 2002. **A**, **VI**
- 41. Health Services Advisory Committee. Safe Working and the Prevention of Infection in Clinical Laboratories and Similar Facilities. HSE Books 2003. **A**, **VI**
- 42. Health and Safety Executive. Blood-borne viruses in the workplace: Guidance for employers and employees. 2001. **A**, **VI**
- 43. British Standards Institution (BSI). BS EN12469 Biotechnology performance criteria for microbiological safety cabinets 2000. **A**, **VI**
- 44. British Standards Institution (BSI). BS 5726:2005 Microbiological safety cabinets. Information to be supplied by the purchaser and to the vendor and to the installer, and siting and use of cabinets. Recommendations and guidance. 2005. 1-14. **A**, **VI**
- 45. Department of Health. Transport of Infectious Substances. Best Practice Guidance for Microbiology Laboratories. Department of Health. 1-13. 2007. **A**, **VI**
- 46. Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB, Jr. et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM). ClinInfectDis 2013;57:e22-e121. **B**, VI
- 47. The Royal College of Pathologists. The retention and storage of pathological records and specimens (5th edition). 1-59. 2015. **A**, **VI**
- 48. Abravanel F, Chapuy-Regaud S, Lhomme S, Miedouge M, Peron JM, Alric L et al. Performance of anti-HEV assays for diagnosing acute hepatitis E in immunocompromised patients. JClinVirol 2013;58:624-8. **A**, **II**
- 49. Public Health England. Laboratory Reporting to Public Health England: A Guide for Diagnostic Laboratories 2016. 1-29. **A**, **VI**
- 50. Department of Health. Health Protection Legislation (England) Guidance. 1-112. 2010. A, VI
- 51. Scottish Government. Public Health (Scotland) Act. 2008. A, VI
- 52. Scottish Government. Public Health etc. (Scotland) Act 2008. Implementation of Part 2: Notifiable Diseases, Organisms and Health Risk States. 2009. **A**, **VI**
- 53. The Welsh Assembly Government. Health Protection Legislation (Wales) Guidance. 2010. **A**, **VI**
- 54. Home Office. Public Health Act (Northern Ireland) 1967 Chapter 36. 1967. A, VI